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Make the case that:

1. Snow has unique properties and spatial variability and has
important controls on Arctic ecosystems,

2. The winter climate, and snow, is changing more rapidly
than the summer climate,

3. Snow is poorly measured during the Arctic winter, and
snow models have limited ability to model Arctic snow,

4. Snow process studies over the entire winter in'the Arctic
have been relatively ignored.

Provide an example from the western Canadian Arctic
where we studying winter snow processes, as well as
summer hydrologic processes. This is an ABoVE transect.



1. Winter air temperature is warming faster than
the other seasons across Canada

Observed changes in seasonal mean air
temperature between 1948 and 2016

a) Winter b) Spring
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Precipitation change across all season has been
variable, with both increases and decreases

" Observed changes in seasonal precipitation
between 1948 and 2012
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. A case study from the western Canadian Arctic: along strong

environmental gradients in temperature, precipitation and vegetation
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Rengleng River. taiga
Caribou Riever. taiga
Havikpak Creek. taiga
Trail Valley Creek. tundra
Hans Creek. Tundra, large lake numbers and area
+ 2 new tundra stations this summer
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Expanding shrubs

Changing lakes

New lakes?

Decreasing slope drifts |
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But .... There area also difficult to explain
changes

Dramatically changing climate, but — unexpected hydrological changes,
that currently are unpredictable by our models

1. Spring melt is starting earlier, but time of Q5 to Q50
either not changing or occurring later (John Shi, ERL)



Earlier snowmelt, but spring melt discharge is not

changing

Much warmer air temperature during
the melt period
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Possible reason: increasing shrub patch size and density, deeper snow in shrub patches,
changes in snow melt energy balance, delayed percolation of meltwater & delayed runoff




But .... There area also difficult to explain
changes

Dramatically changing climate, but — unexpected hydrological changes,
that currently are unpredictable by our models

2. Precipitation is decreasing, open water season is
increasing, and ET is likely increasing, but upland lakes
don’t appear to be changing



Upland lakes, with small contributing area
area not decreasing. Why?
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But .... There area also difficult to explain
changes

1. Dramatically changing climate, but — unexpected hydrological
changes, that currently are unpredictable by our models

3. Rate of rapidly draining lakes
- has been declining for decades



Rapidly draining lakes

J.R. Mackay showed that lakes in
the area have drained at a rate of
1 per year over the last few
thousand years.
S
Marsh et al., showed that since
1950, the rate of lake drainage
has been decreasing, and has

reduced to about 0.5 per year

Possible reason: decreased ice wedge cracking in the winter, as a result of warming
winter temperature, but decreasing snow fall and average depth (but deeper snow
in shrub patches)
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Understanding these, and other ecosystem changes,
requires improved understanding of snow and links to
other key aspects of the Arctic and Boreal systems

SNOW COVER - an important component of climate, hydrological and

ecological systems 7\
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3. But — there is a lack of the required snow
measurements

Due to extreme winter conditions, limited electrical power, and field
crews focussed on summer conditions, there is a significant lack in
winter snow measurements across the Arctic.

Point measurements of the following are prone to large errors and
are extremely unreliable:

- Snowfall: extreme under catch is normal
- Sublimation: eddy covariance difficult to operate in winter

- Snow depth: continuous measurements in deep snow drifts have
not been possible

- Snow density: no methods for continuous observations

- Snow water equivalent: limited options for continuous
measurement



Very few methods available to map spatial
variability in snow & measure discharge

Mapping the extreme spatial variability in snow is difficult as it has
traditionally relied on manual snow surveys of depth and density.
Difficult / impossible to properly account for spatial variability across
terrain/vegetation type.

Recent advances:

- Snow depth: photogrammetry and lidar
- SWE: airborne gamma — lines, not mapping

Streamflow during melt: prone to huge errors

These limitations make understanding the role of snow and the
development and testing of snow models extremely difficult.



4. Integrated observing program in the Western Canadian
Arctic

Beaufort Sea

Treeline

Trail Valley

Creek

50 km apart

Both are ;
continuous G Havikpak
permafrost.

Climate very
similar




Improving snow measurements




Improving snowfall measurements
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Micro Rain Radar

Problem

Unacceptable errors using multiple
Geonor Weighing snow gauges

Solution

New power system to allow heating
of gauges to overcome snow capping
issues

Installation of a Micro Rain Radar
(MRR) and Disdrometer to measure
snowfall




Improving snow water equivalent
accumulation measurements

1000-B CRS

CRS-1000
CRS
X \

April 1/17 May 6/17

_ Modulate Neutron Counts _

Anton Jitnikovitch. 2018



Improving winter sensible & latent Heat
Fluxes

Eddy covariance
- Nested towers
- Tundra and shrub tundra

- Lake tower
-  Forest tower I >




Improving snow remote sensing




Structure-from-motion snow depth mapping

PIX4D
photogrammetry
software
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RGB Orthomosaic (UAS)

Snow-covered surface
elevation (UAS)

Snow-free bareground
elevation (LiDAR)

Snow Depth

Branden Walker, 2019



Mapping end of winter snow water equivalent by
vegetation type

Snow Water Equivalent (SWE)
. =50 mm SWE

End of winter Snow Water Equivalent

SWE (mm)
- High : 1500

Fraction of 30 April, 2016
basin (%) SWE (mm)

Tundra 54 ‘ ‘ ‘ i

Short Shrub 28 @ . 4

Tall Shrub 2 6606666

Drift c 666666
XXX

Branden Walker, 2019



Unmanned Aerial Sy

April 29

P

through melt period

Improved mapping of snow depth

Water storage (m"3)
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Using snow-radar to map snow across Arctic tundra

Dual-Frequency Ku-Band

Radar Mission Concept for

Snow Mass

Climate Research Division, ECCC
Meteorological Research Division, ECCC
Canadian Space Agency

Airbus Defence and 5pace

Science Steering Group

TVCSnow Project

Climate Research Division, ECCC
Canadian Space Agency
University of Massachusetts
Wilfred Laurier University

Chris Derksen and Josh King, ECCCC




Radar Mission Drivers

1. The amount, distribution, and variability of
terrestrial snow mass is poorly quantified
(requires snow water equivalent retrieval) <

2. The performance of land-atmosphere data
assimilation systems is limited by inadequate
treatment of snow mass (requires backscatter)

3. Improved initialization of snow mass will allow
more skilled hydrological prediction

4. Spring snow mass can represent a significant <
hazard

How much water is stored as
seasonal snow and how does it
vary in space and time?

What is the contribution of
snow to the water cycle and
how well can we predict it?

Trail Valley Creek is an important test-bed for determining snow/radar interactions

Chris Derksen and Josh King, ECCCC



Trail Valley Creek Snow Experiment: TVCSnow

Tundra environment ~50 km
North of Inuvik, Northwest
Territories.

UMass 13.5 GHz Radar
+ Airborne 13.5 GHz (Ku)
Single-polarization (VV)

- 2x2m, 1000 m swath

November 9-23, 2018

- Early season snow, sail
freeze-up

January 7-23, 2019

» First large storms

March 17-31, 2019

» End of season
microstructure

April to May, 2019
* Snowmelt period

TVC field campaign
Snow fransect measurements
SnowMicroPen, lceCube meas

Microstructure measurements

SNOW Rropergy

EIMenl

SMRT (Picard et. al, 2017, GMD)

- Active-passive microwave radiative
transfer model for snow s

« (Can use field estimated microstructure | == S
in the scattering coefficient E e

Chris Derksen and Josh King, ECCCC



TVCSnow: supporting measurements
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» High resolution lidar
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Snow modelling

- Snow accumulation modelling:
- John Pomeroy’s Prairie Blowing snow model. Barun Majumder

- Permafrost modelling:
— AWI CryoGrid. Evan Wilcox

- Lake modelling:
- Canadian Small Lake Model. Murray Mackay, ECCC

- Integrated modelling:
- Canadian Hydrological Model, Global water Futures



Canadian Hydrological Model

GWF Next Generation Modelling

Computers and Geosciences 119 (2018) 49-67

Contents lists available at ScienceDirect

vl Computers and Geosciences
- ";.r )

journal homepage: www.elsevier.com/locate/cageo

Research paper

Multi-objective unstructured triangular mesh generation for use in b
hydrological and land surface models

Christopher B. Marsh™”", Raymond J. Spiteri*“, John W. Pomeroy™", Howard S. Wheater™"

# Center for Hydrology, Dept. Geography, University of Saskatchewan, Canada
b Global Institute for Water Security (GIWS), University of Saskatchewan, Canada
© Numerical Simulation Lab, Dept. Computer Science, University of Saskatchewan, Canada




CHM - variable size triangular network =

Log flow accum. : ; A N
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Fig. 6. A flow accumulation raster was used to conform the triangulation, in addition to elevation. Shown is the log;, of the calculated flow accumulation where high
flow accumulation (e.g., stream) is shown in red, and low flow accumulation (e.g., source area) is shown in blue. Small triangles are present along the high flow
paths, and larger triangles in the low flow accumulation areas on the uplands. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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CHM - variable size triangular mesh
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5. Snow research and expanding our links
to ABoVE and SnowEX




A possible Canadian Contribution to ShnowEX

| NASA SnowEx Science Plan

Vo i “-https://snow.nasa.gov/sites/default/files/SnowEx_
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We do not have the capacity at TVC to house a full SnowEx campaign

2. But - coordinating and collaborating with SnowEx on future snow campaigns
could be extremely worthwhile.

3. An Alaskan SnowEx and a Canadian TVC Snow campaign would be very

interesting




How can our snow research better contribute
ABoVE and SnowEx?

And how can we better leverage ABoVE and
SnowEx products to enhance our snow
research?

=" Northern DPBC®It DP o-<IbNIC

' Water Futures

ArcticNet @ NWT CIMP

Northwest Territories Cumulative Impact Monitoring Program
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